Preliminary communication

Stannane derivatives of carbohydrates

LAURANCE D. HALL, DIANE C. MILLER, and PAUL R. STEINER

Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1W5 (Canada)

(Received August 30th, 1976; accepted for publication, September 8th, 1976)

As part of a general programme¹ to synthesize carbohydrate derivatives that are joined to a metal substituent, we now describe examples of two general routes to synthesize derivatives that have an organo-tin substituent attached to either a primary or a secondary carbon atom.

Primary p-toluenesulfonates are sufficiently reactive to be displaced by a tinnucleophile. For example, 1,2:3,5-di-O-methylene-6-O-tosyl- α -D-glucofuranose⁴ (1), in anhydrous tetrahydrofuran under dry nitrogen, reacted during 2 h at 20° with triphenyltin lithium⁵ in anhydrous tetrahydrofuran to give, after processing, (1,2:3,5-di-O-methylene- α -D-glucofuranos-6-yl)triphenylstannane (2) as white granules, in 43% yield, m.p. 108–110° [from chloroform—light petroleum (b.p. 30–60°)], $[\alpha]_{0}^{25} + 60.0^{\circ}$ (c 2.3, acetone)*.

Tin substituents can be easily attached to a secondary carbon atom by reaction of a suitably blocked epoxide with a tin nucleophile. Thus methyl 2,3-anhydro-4,6-O-benzylidene- α -D-allopyranoside (3), in dry tetrahydrofuran under dry nitrogen, reacted almost instantaneously at 20° with triphenyltin lithium; the reaction mixture was stirred for 1 h and then processed to give (methyl 4,6-O-benzylidene- α -D-altropyranoside-2-yl)-triphenylstannane (4) as a fine, colourless powder, yield 75%, m.p. 67-69° [from chloroform—light petroleum (b.p. 30-60°)], $[\alpha]_D^{25}$ + 5.9 (c 2.15, acetone).

In like fashion, methyl 2,3-anhydro-4,6- θ -benzylidene- α -D-mannopyranoside⁷ (5) afforded (methyl 4,6- θ -benzylidene- α -D-altropyranoside-3-yl)triphenylstannane (6) as a foamy syrup; this solidified under vacuum to give 6 in 94% yield, m.p. 166–168° [from toluene-light petroleum (b.p. 30–60°)], $[\alpha]_D^{25} + 91.0^\circ$ (c 2, acetone).

The vicinal 1 H $^{-1}$ H coupling constants of 6 ($J_{1,2}$ 4.0 Hz, $J_{2,3}$ 2.1 Hz, $J_{3,4}$ 5.9 Hz, and $J_{4,5}$ 8.8 Hz) are sufficiently different from those reported for other derivatives of methyl 4,6-O-benzylidene- α -D-altropyranoside to suggest that 6 is distorted by the steric interactions of the triphenyltin moiety. This, and other aspects of C-stannyl sugars will be discussed elsewhere.

^{*}All derivatives reported here had elemental microanalyses and n.m.r. spectra in entire accord with the assigned structures.

ACKNOWLEDGMENT

The authors thank the National Research Council of Canada for their support of this research by operating grants (A 1905).

REFERENCES

- 1 P. R. Steiner, Ph. D. Thesis, University of British Columbia, 1971.
- 2 A. Slee, M. Sc. Thesis, University of British Columbia, 1972.
- 3 V. G. Gibb and L. D. Hall, Carbohydr. Res., 50 (1976) C3-C5.
- 4 O. T. Schmidt, A. Distelmaier, and H. Reinhard, Chem. Ber., 86 (1953) 741-749.
- 5 C. Tamborski, F. C. Ford, and E. J. Soloski, J. Org. Chem., 28 (1962) 181-184.
- 6 N. K. Richtmeyer, Methods Carbohydr. Chem., 1 (1962) 109-110.
- 7 L. F. Wiggins, Methods Carbohydr. Chem., 2 (1963) 189.
- 8 B. Coxon, Tetrahedron, 21 (1965) 3481-3503.